IID sensitivity differs between two principal centers in the interaural intensity difference pathway: the LSO and the IC.

نویسنده

  • T J Park
چکیده

Interaural intensity differences (IIDs) are the chief cues that animals use to localize high-frequency sounds. Neurons that are sensitive to IIDs are excited by sound at one ear and inhibited by sound at the other. Thus a given IID generates a combination of excitation and inhibition that is reflected in a cell's spike count. In mammals, the so-called "IID pathway" begins in the lateral superior olive (LSO), which is dominated by the type of IID-sensitive neurons just described. The LSO then sends a prominent projection to the inferior colliculus (IC), which also contains a substantial population of IID-sensitive cells. Recent pharmacological studies have suggested that the response properties of IID-sensitive neurons in the IC undergo considerable processing and thus should not simply reflect the output of the LSO. However, we have no direct evidence as to whether IID sensitivity, the defining response feature of these cells, differs at these two levels. The present study makes this direct comparison in the Mexican free-tailed bat, a species that relies greatly on high-frequency hearing and thus on IIDs for localizing sounds in space. Extracellular recording techniques were used to obtain IID functions from 50 IC neurons. Comparable data from 50 LSO cells were available from a previous study. The main result was that IID sensitivity significantly differed between cells in the LSO and the IC. Among LSO cells, sensitivity was centered approximately 0 dB (no intensity difference between the ears) whereas, in the IC, sensitivity was biased toward the inhibitory ear: on average, IC cells required a more intense signal at the inhibitory ear to reach the same degree of suppression as observed in LSO cells. Further analysis showed that the vast majority of IC cells (88%) exhibited a mismatch in the latencies of their inputs: inhibition arrived later when an equally strong excitation and inhibition were elicited; this reduced the effectiveness of the inhibition. Because latency shortens with increasing stimulus intensity, an IID with a more intense signal at the inhibitory ear could equate the latencies of excitation and inhibition, increasing the effectiveness of the inhibition. This result suggests that latency mismatches account, to a great extent, for the difference in sensitivity between the LSO and the IC; and when mismatches were negated by electronically time shifting the signals to the ears, sensitivity was no longer significantly different between the two nuclei.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tuning Neurons to Interaural Intensity Differences Using Spike Timing-Dependent Plasticity

Mammals are known to use Interaural Intensity Difference (IID) to determine azimuthal position of high frequency sounds. In the Lateral Superior Olive (LSO) neurons have firing behaviours which vary systematicaly with IID. Those neurons receive excitatory inputs from the ipsilateral ear and inhibitory inputs from the contralateral one. The IID sensitivity of a LSO neuron is thought to be due to...

متن کامل

Low-threshold potassium currents stabilize IID-sensitivity in the inferior colliculus

The inferior colliculus (IC) is a midbrain nucleus that exhibits sensitivity to differences in interaural time and intensity (ITDs and IIDs) and integrates information from the auditory brainstem to provide an unambiguous representation of sound location across the azimuth. Further upstream, in the lateral superior olive (LSO), absence of low-threshold potassium currents in Kcna1(-/-) mice inte...

متن کامل

Processing of interaural intensity differences in the LSO: role of interaural threshold differences.

Cells in the lateral superior olive (LSO) are known to be sensitive to interaural intensity differences (IIDs) in that they are excited by IIDs that favor the ipsilateral ear and inhibited by IIDs that favor the contralateral ear. For each LSO neuron there is a particular IID that causes a complete inhibition of discharges, and the IID of complete inhibition varies from neuron to neuron. This v...

متن کامل

Mechanisms underlying the sensitivity of neurons in the lateral superior olive to interaural intensity differences.

The initial processing of interaural intensity differences (IIDs), the major cue to the azimuthal location of high-frequency sounds in mammals, is carried out by neurons in the lateral superior olivary nucleus (LSO) that receive excitatory input from the ipsilateral ear and inhibitory input from the contralateral ear (IE neurons). The "latency" hypothesis asserts that it is the effects of inten...

متن کامل

Neural delays shape selectivity to interaural intensity differences in the lateral superior olive.

Neurons in the lateral superior olive (LSO) respond selectively to interaural intensity differences (IIDs), one of the chief cues used to localize sounds in space. LSO cells are innervated in a characteristic pattern: they receive an excitatory input from the ipsilateral ear and an inhibitory input from the contralateral ear. Consistent with this pattern, LSO cells generally are excited by soun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 79 5  شماره 

صفحات  -

تاریخ انتشار 1998